转发:2010年生物学领域最热的5篇文章
由生物学领域顶尖的科学家群体(Faculty 1000)成员评选出2010年生物学领域最重要的五项工作。入选的论文,都是远离公众视野、静悄悄进行的一些针对生命活动分子基础的研究。而且都是些长期连续的工作。
No. 5 发现机械力传导蛋白 (Mechanotransduction proteins)
论文: B. Coste, et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels, Science, 330:55-60, 2010.
我们要认识世界首先得要借助于各种感觉系统,包括视觉、听觉、触觉和味觉等获得外界的信号。味觉是化学刺激,视觉光学信号刺激,感受这些刺激信号并将其转化成细胞内可传导信号的受体分子都得到了鉴定和阐明。但是,还有一类感觉,触觉、听觉(声音震动通过鼓膜、听小骨以及耳蜗最终传导到听觉毛细胞摆动)和一些物理刺激引起的痛觉(如刺痛),都是一些机械力刺激,而感受器细胞是如何将力学信号转化成细胞可传导的信号的,长期以来一直是个谜。该工作在小鼠细胞系发现鉴定了这种机械力传导蛋白分子,Piezo1 and Piezo2,终于揭开了这个谜底。
5. Mechanotransduction proteins found
The paper: B. Coste, et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels, Science, 330:55-60, 2010.
A new family of proteins, characterized in a mouse cell line, shines new light on the previously mysterious molecular basis of mechanosensation in mammals. Called Piezos, these proteins have been identified as a critical molecular component in mechanically activated ion channels, which make possible several sensations, such as hearing, touch and pain.
No. 4 炎症反应的放大机制 (Inflammation amplification )
论文: E. Boilard, et al., Platelets amplify inflammation in arthritis via collagen-dependent microparticle production, Science, 327:580-83, 2010.
炎症反应是机体对付损伤、感染和异物入侵等的一种保护性反应,体内的炎症反应是一个级联放大的反应过程。大体表现是局部红、肿、热、痛,其细胞学机理是局部血管扩张、血管通透性增加,血浆向组织渗出,炎症细胞向组织局部聚集,参与清除病原、促进组织修复。病理性炎症反应也和许多病理过程密切相关,如关节炎、类风湿、乙肝的干细胞损伤等,都是炎症反应过度或失去控制引起的对正常组织的破坏。血小板是血液中的一种微小颗粒状的非细胞性结构,在凝血作用中发挥重要作用,但在炎症反应中的作用还没有的到认识。该论文鉴定了血小板膜上的微小颗粒结构在炎症反应的放大中的作用,为炎性疾病的治疗提供了新的线索。
4. Inflammation amplification
The paper: E. Boilard, et al., Platelets amplify inflammation in arthritis via collagen-dependent microparticle production, Science, 327:580-83, 2010.
Researchers identify platelet microparticles -- tiny vesicles that bud from the membranes of activated platelets -- in the fluid of inflamed joints, which rarely contain blood. Importantly, depleting the microparticles using an antibody seemed to cure arthritis in mice.
The discovery, published in a January issue of Science, demonstrates the previously unappreciated role of platelets in inflammatory arthritis.
Read the full story here.
No.3. 解析呼吸链酶复合体I的结构(Complex I enzyme )
论文: R.G. Efremov, et al., The architecture of respiratory complex I, Nature, 465:441-5, 2010.
生物体所需要的能量从哪儿来?从物质代谢中获得。对于绝大多数需要氧气的生物,氧化呼吸是将代谢中间产物经过氧化呼吸链把代谢物中储存的化学能转移到ATP上(生物的能量通用货币)。氧化呼吸链是由一系列酶组成的结构复杂的复合体,就像生产流水线一样,但是远比工厂流水线精巧、紧凑和高效。氧化呼吸链由I、II、III和IV这四个复合体组成,其中复合体I的结构一直未能得到解析。(记得2005年,饶子和领导的实验室和其它几家实验室合作解析了氧化呼吸链酶复合体II的结构,结果发表在Cell上,成为国内重要科技新闻)。这篇论文成功解析了酶复合体I的结构,解决了大家期待已久的问题。
3. Complex I enzyme revealed
The paper: R.G. Efremov, et al., The architecture of respiratory complex I, Nature, 465:441-5, 2010.
The long-awaited structure of a bacterial complex I enzyme -- first in line in the energy-producing respiratory chain -- reveals important mechanics of this ubiquitous protein. Specifically, the structure shows how the enzyme hustles electrons and protons across membranes.
The structure, published by Nature in May, is one of the largest protein membrane complexes ever solved.
No. 2. 纤毛是如何“交谈”的?( How cilia talk)
论文: Q. Hu, et al., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution, Science, 329:436-39, 2010.
恰如昆虫的触角一样,初级纤毛是真核单细胞的感受器,它接受细胞外信号并通过细胞膜蛋白向细胞内传递,但是,那些信号蛋白究竟是怎么“勾搭”上初级纤毛并挂在上面的? 长期以来一直是个迷。这篇论文的研究发现证实:在初级纤毛的基底部有一个由多个septin分子组成的“栏杆”,这一结构可以固定纤毛,并控制膜蛋白的定位和分布。
2. How cilia talk
The paper: Q. Hu, et al., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution, Science, 329:436-39, 2010.
Primary (nonmotile) cilia -- sensory organelles in eukaryotic cells that act as antennae -- rely on membrane proteins to send and receive extracellular signals. New findings, published in the July issue of Science, show how cilia retain those membrane proteins -- a barrier at the base of cilia made up of proteins called septins.
Septins, originally identified as cell division mutants in yeast, localize at the base of the cilium where they maintain a barrier to control the localization of membrane proteins. The discovery solves the long-standing mystery of how signaling proteins are retained in the primary cilium.
One of the papers corresponding authors, Elias Spiliotis, is this months Scientist to Watch. You can read more about septins, and how they may also help protect yeast from the effects of aging, in our October cover story by Yves Barral.
No. 1. 炎症反应为寄生物喂食 (Immune response feeds parasite)
论文: S.E. Winter, et al., Gut inflammation provides a respiratory electron acceptor for Salmonella, Nature, 467:426-9, 2010.
动物的消化道分布着大量的微生物菌类,我们称之为常驻正常菌群,不仅对消化功能十分必要,还可以对机体形成保护,抵制/抑制外来致病(有害)微生物的定居和繁殖。沙门氏菌是一类致病菌,该菌是怎样在与倡导优势菌群的竞争中胜出并致病的呢? 该论文发现, 沙门菌通过独特的能量获取途径在同肠道的菌群竞争中胜出。肠道的炎症反应本来是用来对付肠道病原的,但是其副产物连四硫酸盐却可以被沙门氏菌用作为能源物质,并通过氧化呼吸链获得能量,增强细菌生长,这叫“借力打力”,真是“道高一尺,魔高一丈”!
1. Immune response feeds parasite
The paper: S.E. Winter, et al., Gut inflammation provides a respiratory electron acceptor for Salmonella, Nature, 467:426-9, 2010.
Salmonella is able to out-compete resident gut microbes by deriving energy from the immune response that is supposed to combat the pathogen, according to a study published in September in Nature. Inflammation in a mouse gut generates a sulfur-based molecule called tetrathionate, which Salmonella uses during respiration for enhanced growth.
转自:生物谷